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Response of Pitot probes in turbulent streams 
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The response of a Pitot probe in a uniform laminar stream is commonly expressed 
in the form 

P, = P f gcp uz, 
where 4 is the probe signal pressure, P is the stream static pressure, U is the 
stream speed andp is the fluid density. It has been found that for ordinary sphere- 
nosed, round-nosed and square-nosed probes 

1 - C = K (sin2 O)m = K (  UL/U2)m, 

where 8 is the angle between the velocity vector and the probe axis, and U ,  = U sin 8 
is the transverse velocity component. The parameters m and K are functions of 
the probe geometry. These formulae also describe the performance in a turbulent 
stream when the probe is small compared with the turbulence scale. The evalua- 
tion of the time-averaged response is treated, and an answer is developed to the 
question of what it is that a Pitot probe measures in a turbulent stream. I n  a 
turbulent shear flow having the properties of a boundary layer, the reference 
pressure is best taken to be the static pressure a t  the shear-layer edge. It is 
shown that round-nosed probes with Di/D N 0.45 and square-nosed probes with 
D,/D N 0.15 then detect & p r i  with good accuracy, where Di/D is the ratio of 
the inside and outside diameters of the Pitot tube. When measurements are 
made with two probes of dissimilar geometry, the differential response can be 
used to find the mean-square level of the transverse velocity fluctuations. Turbu- 
lence levels so measured agree closely with results from hot-wire anemometry. 

1. Introduction 
The effect of turbulence on the response of Pitot probes has excited specula- 

tion (e.g. Goldstein 1936; Hinze & van der Hegge Zijnen 1949; Alexander, 
Baron & Comings 1950) but little serious study, despite the widespread use of the 
device t o  measure mean velocity turbulent flows. We have used Pitot probes in 
studies of turbulent jets and flames, and have been conscious of the considerable 
uncertainty in the interpretation of the results in regions of high turbulence 
intensity, It also occurred to us (1969) that any effect of turbulence might be 
used for the characterization of turbulent velocity fluctuations. The present 
investigation was therefore undertaken, first, to advance the knowledge of Pitot 
response in turbulent flows and second, to examine the use of Pitot devices for 
the detection of turbulence intensity. 
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The basis for a quantitative treatment of the problem was established by 
H.inze (1959, p. 136), whose argument suggests that the theory of the response in 
a turbulent stream, where the velocity vector fluctuates in both magnitude and 
direction, should be based on knowledge of the directional response in a laminar 
stream. He supposed that in a laminar flow 

p,-P = + p u z [ i - ~ ( i - c ~ ~ e ) l ,  ( 1 )  

where f3 is the angle between the velocity vector and the probe axis, and B is a 
constant. I n  a turbulent flow 

On applying a series expansion and time averaging the result, he obtained 

Hackeschmidt (1968) and Eickhoff (1969) have examined the application of this 
relation, and the latter has reported experimental values of B for several probes. 

The present work shows that (1) and ( 2 )  can be considerably improved with 
respect to generality and accuracy, and better results are obtained by using a 
different laminar response equation and a more rigorous statistical scheme. 
The basic idea underlying the analysis is, however, the same. It consists of the 
assumption, implicit in Hinze’s approach, that, when the turbulence scale is 
large compared with the critical probe dimensions, the flow around the probe is 
locally quasi-steady, quasi-uniform and quasi-laminar and the instantaneous 
signal pressure in the probe head is virtually the same as in a steady uniform 
laminar stream. The time-mean response is then formed by time averaging the 
instantaneous signal. This is analogous to the approach in hot-wire anemo- 
metry, where it is supposed that the law of heat loss at  any instant from a 
sufficiently small heated cylinder in a turbulent stream is the same as in a steady 
laminar flow with the same local velocity. The assumption must be valid in the 
limit. Otherwise, it must largely be left to experiment to  establish quantitatively 
the conditions under which it fails; i.e. when is the turbulence scale too small 
relative to the probe dimensions, and how do the frequency response charac- 
teristics of the probe affect the result? 

The work followed the plan suggested by the above discussion. A study was 
made of the directional response of Pitot probes in a steady uniform laminar 
stream, and a general formula for the response characteristic was developed. 
An expression for the time-mean response in a statistically steady turbulent 
stream was then obtained by time averaging, and mathematical solutions were 
developed under a set of simplifying assumptions. The results were used (i) to 
explore the optimization of probes for mean velocity measurements in turbulent 
flows and (ii) to examine the possibilities for the detection of velocity fluctuation 
intensity. The predictions were finally compared with experimental data and 
shown to be practically valid. 
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2. General considerations 
Attention is restricted to probes that are axisymmetric. A Cartesian (2, y, z )  

reference frame is generally convenient, with origin at  the centre of the probe 
mouth, Ox along the probe axis and x positive in the direction into the probe. 

Since the plane of the probe mouth is perpendicular to the probe axis, the angle 
8 between the axis and the stream velocity U can be unambiguously called the 
angle of incidence of U on the probe (rather than, arbitrarily, yaw or pitch). 
The velocity U may be resolved into U, = U cos 8 and U, = sin 8. The component 
U, is outward, normal to the probe axis and represents the stream speed in the 
plane of the probe mouth, analogous to  the three-dimensional stream speed U .  
We have U i  2 UEi- U i  and U2 = U i - t  UE+ U:. 

Consider a probe in a steady uniform laminar stream. Not far inside the probe, 
the influence of the external flow effectively vanishes and the fluid is at rest. 
The quantity sensed in a measurement is the pressure P, within this stagnant 
fluid. The pressure in the undisturbed field at  the position of the centre of the 
probe mouth (when the probe is absent) is P, the stagnation pressure is Po, and 
the stream velocity is U. When = Po, the response is commonly held to be ideal, 
a notion reflected in the name ‘total head probe’. Then P,- P = Po - P = ipU2 
and the instrument detects the stream speed U .  

In  view of the most frequent objective of velocity measurements, it might be 
more desirable for the definition of ideal response to be P, - P = &pU: = +pU2 
x (1 - sin2@. Such a response is, however, unobtainable, whereas P,- P = ipU2 
is closely approached by certain probe designs over a wide range of 8, and 
represents the upper limit in a uniform laminar stream. The custom of using 

P,-P = *puz 

as a reference standard will therefore be retained, but with the following qualifica- 
tion: we shall call it the ideal total response. We shall then introduce the concept 
of ideal transverse response, defined by 

P,-P= &pU2(1-Ksin28), (3) 

where K is a constant. Thus a probe with ideal transverse response is one whose 
departure from ideal total response is linear in sin28 = Ui /U2 .  

Dynamic effects of the measurement system and of the pressure transmission 
lines do not exist under the condition that the fluid inside the probe, beyond 
the immediate vicinity of the probe mouth, is stagnant, and the output signal 
is the pressure P, within this fluid. This restriction is in accord with good measure- 
ment practice; calibration for conditions where significant surging of fluid through 
the probe is allowed is usually difficult or impossible and is not normally at- 
tempted. In  steady laminar flows, the problem should not arise. For statistically 
stationary turbulent flows, interest is restricted to the time mean of P,; virtual 
stagnation of the probe fluid is then ensured if the volume of fluid in the line of 
pressure transmission is adequately small, or if a suitable flow resistance is 
inserted in the line of transmission at  a point sufficiently near the probe mouth. 
If the instantaneous signal is however to be detected, in a turbulent flow or in any 
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other fast transient flow, then the flow passage should be blocked not far from the 
mouth, and a suitable transducer, such as a piezoelectric device, located in the 
passage to sense the instantaneous value of P,. Ebrahimi (1967) has reported on a 
probe in which a condenser microphone was used. 

3. The effect of orientation in laminar flow 
Four external probe geometries will be considered: (i) the sphere-nosed probe, 

a sphere on a tubular support, (ii) the round-nosed probe, a hemispherically 
truncated tube, (iii) the square-nosed probe, a squarely truncated tube, and 
(iv) the sharp-lipped probe, often realized as a conically truncated tube of small 
cone angle brought to minimum practical thickness a t  the lip. The characteristic 
external diameter D is the sphere diameter in the first case, the outside tube 
diameter in the second two and the outside tip diameter in the last. The probe 
'nose' includes the straight run of tube, of length L, before any bends or signifi- 
cant changes in diameter. The scale of the internal geometry is characterized 
by the mouth diameter Di of the impact pressure opening. The following con- 
ditions are set. 

(i) The probe nose is long enough so that downstream geometry has negligible 
effect on the response. The results of Ower & Johansen (1926) on static pressure 
distribution along the nose indicate that L / D  > 6 is normally sufficient. 

(ii) The internal passage is of constant diameter for a sufficient distance Li 
so that the fluid inside is brought to rest before any changes of cross-section, 
eliminating internal geometry as a variable. Data on the performance of static 
pressure taps (Myadzu 1936; Ray 1956) indicate that L,/D, > 3 is normally 
sufficient. 

(iii) Unless otherwise noted, the probe Reynolds number DU/v is large and 
viscous effects are unimportant, admitting arguments from potential-flow theory. 

(iv) Unless otherwise noted, the Mach number is small and compressibility 
effects are unimportant. 

The probe response in a uniform laminar flow is usually expressed as 

P, - P = gcp u2. (4) 

Under the stated conditions, the coefficient C is expected to depend only on the 
diameter ratio Di/D and the external geometry. We have found empirically that 
the following generalization of (3) describes most results within the margins of 
experimental error : 

( 5 )  

where K and m are constants for a given probe. Figure 1 shows typical results for 
square-nosed and round-nosed probes; in each case the graph of In (1 - C )  us. 
In (sin28) puts the data on a straight line, confirming the applicability of ( 5 )  over 
the experimental range of 8. Since (5) provides a very convenient expression of 
the transverse response, i.e. the response to sin2 r9 = U:/U2, no other form will be 
considered. We have m = 1 for ideal transverse response, m = 00 for ideal total 
response and for real probes, 1 < m < 00. 

P, - P = +p U2( 1 - K(sin2 8)m), 
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FIGURE 1. Examples of directional response characteristics for Pitot probes, demonstratting 
applicability of the relation In (1 - C) = h K + m In (sin2 0). 0, round-nosed probe with 
Di/D = 0.108 (present work); 0, square-nosed probe with Di/D = 0.125 (Gracey et al. 
1951); a, square-nosed probe with Di/D = 0.61 (present work). 

Results for sphere-nosed, round-nosed and square-nosed probes 

A general summary of experimental results is given in table 1 and the values 
of m and K are also shown graphically in figure 3. Figure 3 was found to be useful 
in interpolating and extrapolating the results for square-nosed and round-nosed 
probes. Our sphere-nosed probes were constructed from brass ball-bearings 
mounted on small hypodermic tubing stems. Further details of our experiments 
may be found in a thesis (Brown 1971) and in an earlier paper (Becker & Brown 
1969). 

The values of m and K as functions of the diameter ratio DifD (figure 3) 
can also be estimated from the empirical formulae summarized in table 2. The 
potential-flow solution for the pressure field around a sphere gives K = 8 
and m = 1 exactly as Di/D -+ 0. For round-nosed and square-nosed probes, the 
case of the thin-walled tube is approached as DJD -+ 1. Extrapolation indicates 
that in this limit m = 3.13 and K = 2-91. 



H .  A .  Becker and A .  P. C. Brown 

DilD 

0.084 

0.073 
0.095 
0.127 
0.174 
0.226 
0.257 

0.195 
0.295 
0.395 
0.500 
0.740 

0.24 
0.33 
0.53 

0.108 

0.075 
0.409 
0.663 
0.825 
0.965 

0.125 

0.61 
0.64 

na K K l m  Range of 1 - C 

Sphere-nosed (Becker & Brown 1969) 

& 

1.173 2.05 1-75 0.005 0.5 

Sphere-nosed (present data) 
1.140 2.18 1.91 0.005 0.4 
1.185 2.17 1.83 0.005 0.4 
1.220 2.15 1-78 0.005 0.3 
1.307 2.29 1.75 0.005 0.3 
1.372 2.31 1.68 0.005 0.2 
1.415 2.27 1-61 0.005 0.2 

Round-nosed (Merriam & Spaulding 1931) 
1.495 3.70 2.48 0.01 0.3 
1.600 3.49 2.18 0.006 0.2 
1.698 3.41 2.01 0.004 0.2 
1.764 2.76 1.56 0.003 0.1 
1.820 1.048 0.58 0.003 0.04 

Round-nosed (Pankhurst & Holder 1952) 
1.665 
1.683 
2.06 

1.192 

1.265 
1.579 
1.99 
2.45 
3.00 

1.286 

2.13 
2.00 

5.08 3.05 0.006 0.15 
3.18 1.89 0.008 0.05 
4.52 2.19 0.015 0.15 

Round-nosed (present data) 
2.39 2.00 0.01 0.4 

Square-nosed (Davies 1957) 

1.310 1.037 0-015 0.6 
1.586 0.995 0.02 0.5 
2.20 0.905 0-01 0.5 
2.65 0.920 0.015 0.5 
2.79 0.930 0.015 0-4 

Square-nosed (Gracey et al. 1951) 
1.142 0-888 0-03 0.5 

Square-nosed (present data) 
2.94 1.38 0.005 0.5 
2.04 1.02 0.005 0.5 

Flat-tipped, tapered (Gracey et aZ. 1951) 
tc = 7.5", DJD,  = 0.125 

0.385 1-445 
0.555 1.693 
1.000 2.77 

a = 15", DJD, = 0.125 
0.385 1.301 
0.555 1.474 
1.00 2.24 

tc = 22.5", DilDo = 0.125 
0.375 1.221 
0.555 1.342 
1.00 1.890 

1.51 1.04 0.03 
1.99 1.17 0.05 
3.61 1.30 0.02 

1.56 1.20 0.04 
1.99 1.35 0.03 
3.61 1.61 0.06 

1.68 1.38 0.05 
2.08 1.55 0.05 
3.54 1.87 0.05 

0.6 
0.6 
0.3 

0.7 
0.7 
0.7 

0.7 
0.8 
1 

~ ~- 

ern 

33" + 

28" + 
28"+ 
28" + 
28" + 
28" + 
28" + 

24" + 
24" + 
24" + 
24" + 
24" + 

18" + 
20"+ 
25" + 

28" + 

45" + 
45" + 
36" 
36" 
45" + 

45" + 

2 8 O +  
33" + 

45O + 
45" + 
SNC 

45" + 
SNC 
SNC 

SNC 
SNC 
SNC 
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D P  m K Klm Range of 1 - C 6, 
& 

Flat-tipped, tapered (Merriam & Spaulding 1931) 

0.35 1.686 2.17 1.29 0.01 0.1 24" + 
N.P.L.,a = 2*9",Dt/D,, = 0.20 

W.N.Y., a = 50°, DilD, = 0.20 
0.44 2.04 3.62 1.77 0.008 0.1 24" + 

B.S., a = 3.4", DilD, = 0.38 
0.84 2.14 1.34 0.63 0.005 0.04 24" + 

A.S.H.V.E.,a = 13*6", DJD, = 0.20 
0.32 1.787 3.00 1.68 0.01 0.1 24" + 

TABLE 1. Response parameters and data ranges in studies of sphere-nosed, round-nosed, 
square-nosed and tapered Pitot probes. The last column shows the upper limit of the range 
of 19 in which (5) is followed: an entry such as 45"f means that ( 5 )  applied over the entire 
experimental range, while ' SNC ' indicates slight negative curvature over the entire 
range. 

Tapered and sharp-lipped probes 

Probes with D,/D 2: I are of particular interest because of their virtually ideal 
total response over a broad range of 0; for example, figure 2 indicates that 
1-C < 0.001 up to 16' and 1-C < 0.01 up to 24". Square-nosed probes with 
Di/D nearly unity are, however, often impractical because of the small wall 
thickness required. A tube tapered at  the tip to the minimum practical lip thick- 
ness may then be employed. The question arises as to how steep the taper 
can be without significantly affecting the response. 

Consider therefore a flat-tipped tapered probe - a conically truncated tube, 
truncated yet again by a plane at  right angles. The outer diameter of the tube 
is Do, the inner diameter is Di, the outer tip diameter is Dt, the length of the 
tapered section is L, and the taper is characterized by the cone half-angle 

a = tan-l ((Do- Dt)/2L,). 

In  general, the characteristic outside nose diameter may be taken to be either 
D = Do or D = Dt. When a is sufficiently small, the response should be that of a 
square-nosed probe with D = D,. At the other extreme, as a approaches a right 
angle, the probe becomes a square-nosed probe with D = Do. Because of our 
interest in small values of a, we take D = D,, giving Di/D = Di/Dt for the charac- 
teristic diameter ratio. 

Experimental results for flat-tipped tapered probes are shown in figure 4 
and parameter values are summarized in table 1. The results indicate that, 
when a < 3", the values of rn and K differ negligibly from those for square-nosed 
probes of equal DJD. It should be noted that at  larger values of a equation (5) 
was exactly followed in only a few cases. The deviating data sets showed a 
small but significant negative curvature in the graph of In (1 - C) vs. In (sin2 0), 
and the values of m and K in table 1 were obtained by fitting the best straight 
line over the range of the data. 
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FIUURE 2. A comparison of response characteristics for square-nosed and round-nosed 
Pitot probes: the angle B where (top curves) 1 - C =I 0.1, (middle curves) 1 - C = 0.01 and 
(bottomcurves) 1-C = 0.001, as a function of DJD. Probe types: 0, A, square-nosed; 
0 ,  B, A, round-nosed. Data sources: 0, Davies ( 1  957); A, A present data; 0, Gracey, 
et al. (1951); 0 ,  Merriam & Spaulding (1931); 11, N.P.L. data (Pankhurst & Holder 
1952). 

Two tapered square-ended probes of a modified design were used in our 
experimental work. One, with D,/D = 0.61 at  the tip, is shown in figure 13. The 
other, a similar probe with Di/D = 0.64, is described in our earlier paper (1969). 
The characteristics of these probes (see table 1 and figure 3) agree quite closely 
with those of square-nosed probes. 

Effects of internal geometry 

Consideration has been restricted to probes in which the impact hole is of con- 
stant diameter to a sufficient depth so that internal geometry is not a factor in 
probe performance. It is interesting, thou sh, that some effects of internal 
geometry have been investigated by Gracey, Letko & Russell (1951), with a 
view to reducing the directional sensitivity relative to that of a square-nosed 
probe with the same tip Di/D ratio. One variation was to introduce a conical bore 
in the mouth of a cylindrical probe, so that the internal passage converged from 
the full outside diameter Do at the tip to 0.1875 Do at some distance inside. 
Several other internal geometries were also examined, but the conclusions 
are generally the same: small decreases in directional sensitivity can be achieved, 
but the data depart from ( 5 ) .  
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0 I 

Dim 
FIGURE 3. The parameters rn and K/rn as functions of Di/D for sphere-nosed, round-nosed 
and square-nosed Pitot probes. Probe types: + , sphere-nosed; 0, A, square-nosed; 0 ,  ., 
A, round-nosed. Data sources; +, A, A, present data; 0, Davies (1957); 0,  Merriam & 
Spaulding (1931); ., N.P.L. data (Pankhurst & Holder 1952). 

Eflects of shrouding 

Directional insensitivity exceeding that of the thin-walled tube can be achieved 
by placing a shroud (a short tube or venturi channel) around the tip of a simple 
probe, resulting in the device invented by Kiel(l935). Directional response data 
from a Kiel probe described by Pankhurst & Holder (1952, figure 92) follow (5), 
with K = 25 and m = 15. This high value of m confers virtually perfect total 
response up to 0 = 45". Such a characteristic is not necessarily advantageous, 
however. The shroud also greatly increases the effective diameter of the probe, 
and adversely affects the transient response. 
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Maximum 
deviation, 
positive 

Probe geometry Range Rdation or negative 

Sphere-nosed h i 0.26 K = $, m = 1 + 2 ~ 3 5 h -  3.25h2 445 yo, 0.7 yo 
Round-nosed h < 0.35 K = $m, m = 1 + 3.16h- 3*6h2 12%, 1 %  

Square-nosed 0 < h < 1 K = 0*97rn, m = 1 + 0.225 exp ($A)  7 %, 0.7 Yo 

TABLE 2. Empirical relations for the Pitot response parameters K and 
m as functions of the diameter ratio h DilD 

30" 

20" 
e 

10" 

0 1 

DilD 

FIGURE 4. A comparison of response characteristics for tapered Pitot probes. Taper angles 
a: 0, v, 2.9"; 0, 3.4'; 0, 5";  0 ,  7.5"; A, 13.6'; I I ,  15'; A ,  22.5'; 4, any value (square- 
nosed probe, D, = Do). Ratios D,/D,: @, ., 4, A ,  0.125; 0, 13, A, 0.20; 0, 0-38. 
Data sources: 0 ,  w, 4, A, Gracey et al. (1951); 0, 0, 0, A, the N.P.L., W.N.Y., B.S., 
and A.S.H.V.E. probes of Merriam & Spaulding (1931); V, the N.P.L. probes of Davies 
(1957). Top curves, 1-12 = 0.1; bottom curves, 1 -C = 0.01. 

4. Effect of large-scale turbulence 
Consider a Pitot probe in a statistically steady turbulent stream. Suppose 

that the probe is small relative t o  the local integral scale A of the turbulence and 
is oriented facing the mean velocity vector. fhppose also that the probe is inter- 
nally blocked or constricted not far from the mouth, so that the fluid inside is 
essentially stagnant at  equilibrium. We assume that the pressure P, inside the 
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nose then follows the instantaneous velocity vector as in a steady uniform laminar 
stream: 

P, = P + & C p P  = P + &pU2[1 - K(sin2 Qm] 

= P + Q U Z [ l -  K (  u:/u2)"z]. (6) 

(7) 

Since the probe is considered to be parallel to the mean velocity vector 0, we 
have U, = U, = 0 and U; = U; + Uz = u; + u:, where u, and u, are the fluct- 
uating components of U, and U,. 

The key parameter in (7) is the exponent m. The minimum value, m = I, 
gives linear response to the mean-square transverse velocity fluctuation 

When P, is time averaged, 

ps = p + hpv- gKpUZ(1-m)U;m. 

- - -  
u: = u;+u;; 

- 
Fs = H + + p U z - + K p E .  (8) 

The maximum value for simple probes, m = 3.1, makes the transverse response 
negligible over a usefully broad range of Ui lU2 ,  in which case 

Fs = P+$ppuz. (9) 
- -  

A special case occurs when the turbulence level is very low; then U;, u i  < fli, 
giving 

The theory of the general case is developed through the statistical interpreta- 
= u; + u: and U2 = Dz + uz + U; + uz. tion ofthe quantity U2(1-m)Ukm. We have 

Thus 

where f,, (u,, u,, u,) is the joint probability function of u,, u, and uB, and 

g( v,, us, u,, u,) = U 2 ( 1 - m ) u p  = (Q + u: + u; + u y m  (u; + u p .  

A useful first approximation to the value of the definite triple integral is obtained 
by supposing the following. 

(i) The velocity fluctuations are uncorrelated, giving 

f x l / z (ux ,  U y ,  ZG,) = f , ( U X ) f , ( ~ Z ) f Z ( U , ) *  

f,(u,) = [i~~.27r)*]--1 exp ( - U:/S%) 

(iii) The variances of the velocity fluctuations have a constant relation, say 

(ii) The velocity fluctuations are normally distributed, so that 

with analogous relations for uu and uz7 where ax = (2)4, etc. 

- - -  - 
u; = u;, u: = pu:, - -  

where u; + uz = pk and /I is a constant. In  isotropic turbulence p = 4, while in 
turbulent shear flows @ = 1 is a better approximation. 
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The solution of (1 1 )  under the stated conditions is of the general form 

~ ( 1 - m ) U t ~  = iT$v2mi++(m,,8, vz), (12)  
- _  

where v2 E U i / U z  and $ is the value of l;he normalized (non-dimensional) 
definite triple integral. Because of cylindrical symmetry, it is possible to replace 
the rectangular surface element du,du, by a ring 2nUndUn = ndUL and thus 
reduce the integral to two dimensions, giving 

- 
where 6 2  = u : / 2 2  and 7 = U i / U i .  This result is analytic in the limit $ + $o 
as v2 3 0, yielding the gamma function = m ! 

The range of 02 = U i / U ;  is 0 < v2 < co, whereas that of w2 = U $ / U 2  is 

= F(m + 1)  in general, and 
for integer values of m - _  in particular. -- 

0 6 wz < (1 + /3-l; where 

Furthermore, when v2 is large, the uncertainty in experimental values of 0; 
may be great. It is thus advantageous to write (12)  in the modified form 

w2 = V 2 / [ 1 + ( 1 + p ) v 2 ] .  (14)  

~2(1- -m)  ~ 2 m  n = F w s m X r ( m +  I), (15) 

where x E (D;/u")l-m$/$o = [I + (1 t-p)v2]m-l$/r(m + 1). 

The function x has been computed for 

/3 = $,$, l,t, 2, m = 1,1.02, 1.05, 1.1, 1-2, 1.4, ..., 3.0, 3.2, 

w2 = 0.01, 0.02, 0.03, 0.05, 0.07 0.1, 0.15, 0.2, 0.3, ... . 
The numerical output, consisting of tables of% and 1 - x, is available in a report 
(Becker & Brown 1972) and a sample is shown in table 3. The data are well fitted 

x = 1 - AW2/ (  1 $. BWZ), (16) 

(17L (18) 

where A,, A,, B,, B2 and a are defined in table 4. The predicted values of x are 
accurate to within 1 0.5 yo when w2 < 0.3 and t o  within 10.1 yo in major por- 
tions of this region. The equations are thus of comparable accuracy with ordinary 
Pitot probe measurements, and should be satisfactory for most purposes. 

by 

A = A,+A,(m- l)', B =: B,+ B2/(m- l), 

5. Total Pitot response 

beginning of $4 is 
The quantity actually measured by a Pitot probe operated as described at the 

(19) ps - PO - p - PO + & UZ - $Kp UZ(1-m)UZm 
n 7  

where PO is a reference pressure. We shall consider two interesting cases: (i) 
PO = P and (ii) PO = Pb, where 4 is the mean static pressure at  the boundary of 
a turbulent flow that satisfies the boundary-layer approximations. 



Pitot probes in turbulent streams 97 

w2 
02 

m 

1.05 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 

W2 

0 2  

9% 

1.05 
1.2 
1.6 
2.0 
2.4 
2.8 
3.2 

0.01 0.02 0.05 0.10 0-20 
0.0101 0.0206 0.0540 0.1176 0.2857 

X X X X X 
0.9952 0.9947 0.9933 0.9912 0.9878 
0.9952 0.9930 0.9867 0.9775 0.9626 
0.9903 0.9814 0.9578 0.9236 0.8724 
0.9807 0.9627 0.9152 0.8519 0.7616 
0.9680 0.9386 0.8637 0.7690 0.6434 
0.9525 0.9100 0.8053 0.6805 0.5277 
0.9345 0.8773 0.7421 0.5912 0.4212 

(a)  

0.01 0.02 0.05 0.10 0.20 
0.0102 0.0208 0.0555 0.1250 0.3333 

X X X X X 
0.9952 0.9947 0.9933 0.9915 0.9886 
0-9953 0.9930 0.9870 0.9786 0.9663 
0.9903 0.9817 0,9586 0.9277 0.8843 
0.9808 0.9632 0.91 77 0.8591 0.7810 
0.9862 0.9394 0.8674 0.7792 0.6685 
0.9528 0.9111 0.8102 0.6933 0.5559 
0-9349 0.8788 0,7482 0.6057 0.4503 

( 6 )  

TABLE 3. Values of the Pitot response function x for flows with 
(a)  p = *and (6) /3 = 1 

t 
co 

X 
0.9799 
0.9279 
0.7696 
0.5990 
0.4419 
0.3111 
0.2100 

8 
a3 

X 
0.9860 
0.9550 
0.8450 
0.7114 
0.5725 
0.4423 
0.3290 

Range of m A ,  

< 2.5 0.1806 
3 2.5 0 

/3 Range of 1yb B, 

6 
* < 2.5 2.833 

2 2.5 2.833 
< 2.5 3.13 1 

1 2 2.5 3.50 

TABLE 4 

A2 a 

1.810 1.674 
1.880 1.667 

B2 
0.5278 
0.5278 f 0~000069e2s7m 
0.965 
0 

The case Po = F 
This is the case of a Pitot-static (combined impact and static pressure) probe 
with ideal static pressure response. The degree to which such a response is 
realizable is unclear, and a critical study of static pressure probes designed for use 
in turbulent flows is needed to resolve the question. 

We define a pair of functions to measure departures from the two most inter- 
esting standards of performance, (i) the direot detection of +pi? and (ii) the 
direct detection of +po i :  

F = 1 - (F, - F)/+puZ, F, E 1 - (P ,  - F)/$pU:. (2% (21) 
7 F L M  
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FIGURE 5. The function P for square-nosed probos in flows with /3 = 1. The values of 
Di/D, given ( f r o m  table 2 )  by Di/D = $In [4.44 (rn - l)], correspond to rn = 1.2, 1.4, 1.6, 
1.8, 2.0, 2.4, 3.0. The value Di/D = -0.052 is artificial. 

From the results in the preceding section 

F = Kw2mXI'(m+1), Fx= 1 - ( 1 - - P ) / [ l - ( l + p ) w 2 ] .  (22), (23) 

These functions have been computed for = 4 and 1 and for values of m and K 
appropriate to square-nosed, round-nosed and sphere-nosed probes (Becker 
& Brown 1972). Examples of the results are sh.own in figures 5 and 6. F is always 
positive, whereas Fz can be positive or negative. 

The selection of probes whose response approximates one of the standards is 
facilitated by graphs of w2 'us. Di /D at fixed vdues of li" and F,. Values of f 0.01 
and f 0.03 are suitable, representing interesting levels of error in the detection 
of & p p  and &poi. The following conclusions are indicated. 

(i) The quantity &p@ is most accurately defined by square-nosed probes 
of large DJD ratio. These, in other words, give small values of F over a much 
broader range of turbulence levels w2 than do round-nosed or sphere-nosed 
probes. The effect of Di/D is shown in figure 7 .  



0.0 I 

Pitot probes in turbulent streams 99 

0.1 

W2 

FIGURE 6. The function P, for round-nosed (full curves) and 
sphere-nosed (dashed curves) probes in flows with P = 1. 

P t 1 s 1 

Range of P, f 0.03 f 0.03 f 0.01 * 0.01 

Range of w2 < 0.15 < 0.17 < 0.075 < 0.09 
Optimum Di/D 0.24 0.12 0.125 0.05 

TABLE 5 

(ii) The quantity i p u i  is most accurately defined by round-nosed probes with 
Di/D < 0.3. The effect of Di/D on Fz is shown in figure 8. At w2 < 0.1, IFz] < 0.03 
in the range 0.12 < Di/D < 0.24 when /3 = 3 and 0 < Di/D < 0.12 when /3 = 1. 
At the optimum value of DJD, the range of w2 in which Fz is smaller than a given 
value is maximal; see table 5. Since 4 < /3 < 1 in most flows of interest, the overall 
optimum may be taken to be Di/D 2i 0.12. 

(iii) Sphere-nosed probes behave sufficiently like round-nosed probes to be 
practically indistinguishable from them. 
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0.0 

FIGURE 7 .  The turbulence level w 2  at  which the function P takes the values 0.003, 0.01, 
0.03 and 0.07 as a function of Di/D for square-nosed probes in flows with /3 = 1. Results 
for /3 = $ are virtually the same. 

Th.e case Po = Pb 
I n  a turbulent flow that satisfies the classical thin-boundary-layer assumptions 
(boundary layers, duct flows, jets, wakes and mixing layers), the lateral com- 
ponent of the equation of motion reduces to 

_. 
Pb - P = puit (24) 

for planosymmetric flows, and 
-I .- 

r 

for axisymmetric flows, where y = b or r = b at the shear-layer edge (the wall 
in a boundary layer or duct flow, or just insid.e the free stream in a jet, wake or 
mixing layer), is the local mean static pressure and P = Pb a t  r = b. We assume 
that, to a good approximation, 3 5 o r 2  =: q. Then, in the present context, 

Reasonably accurate detection of pb is usually not difficult. The measurement 
ofp, - Pb is then the most effective way to use a Pitot probe in such flows. 
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FIGURE 8. The turbulence level w2 at which the function FE takes the values - 0.03, - 0.01, 
0.01 and 0.03 as a function of DJD for round-nosed probes in flows with P = 8 (dashed 
curves) and P = 1 (full curves). 

P $ 1 + 1 

Range of G, - + 0.03 - + 0.03 - + 0.01 - + 0.01 

Range of w2 - 
Optimum DJD > 0.47 0.45 0.59 0.24 

< 0.16 G0.11 < 0.075 

TABLE 6 

The same approach as in the case Po = P can be employed. We define 

and obtain G =  F+w2,  G, = F%+v~.  

Values of G and G, have been computed together with those of F and F, (Becker 
& Brown 1972). The graphs of G and G, v8. w2 are qualitatively similar t o  those 
of E and F,, shown in figures 5 and 6. 

Graphs of w2 vs. DJD at fixed values of G and Gz indicate the following con- 
clusions. 

(i) There is no probe that responds with reasonable accuracy to + p p ,  i.e. 
at  no value of Di/D is the value of G small over a broad range of w2. 
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FIGURE 
- 0.01, 
(dashed 

0.1 

WZ 

0.01 
0 0.2 0.4 0.6 

DJD 
9. The turbulence level w2 at which the function G ,  takes the values 

0.01 and 0.03 as a, function of D J D  for round-nosed probes in flows with 
curves) and ,8 = 1 (full curves). 

- 0.03, 
, 8 = $  

(ii) Round-nosed probes can be used to detect ipuz with good accuracy. 
Figure 9 indicates that a t  w2 < 0.1, lGxl < 0.03 in the range Di/D > 0.47 when 
,4 = and 0.27 < Di/D < 0.45 when /3 = 1. At the optimum value of D J D  for 
given limits of Gx the range of w2 is maximal, see table 6. The overall optimum 
value of Di/D is about 0.45. 

with reasonable accuracy. 
Figure loindicates thatforw, < 0.1, IGxl < 0.03intherange0.14 < Di/D < 0-74 
when /3 = + and 0.14 < Di/D < 0.15 when /3 = 1, The overall optimum Di/D is 
roughly 0.15. 

(iv) Sphere-nosed probes behave rather like round-nosed probes in the detec- 
tion of +pgz, but are slightly less accurate. 

(iii) Square-nosed probes can also detect 

6. Differential Pitot response 
Consider measurements made a t  the same point in a turbulent flow, or a,t 

statistically equivalent points, with two pro-bes having different values of the 
transverse response parameters m and K .  The difference A 4  3 PSI -Ps2 in the 

(31) 
time-averaged responses is 

where 

In  terms of the functions defined in the preceding section, 

- 
AP, = H ,  - H' 1, 

H = +p@.Kw2mXr(m+1) = +ppB~~v2"[1+(1+/3)v2]1-m~r(m+1) .  

- 
AP, = +pF(F,  - F,) = + p F  (G, - G,) 

- 
= +pU3Fx, - Fz.) = 4pD3Gx2 - Gxl) .  
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0 I 

DilD 
FIGURE 10. The turbulence level w 2  at which the function G, takes the values -0.03, 
- 0.01, 0.01 and 0.03 as a function of Di /D for square-nosed probes in flows with /3 = 4 
(dashed curves) and /3 = 1 (full curves). 

These relations can be used for the measurement of the mean-square transverse 
velocity fluctuation 3 w2@ = v2O$ A useful alternative form is obtained 
by normalizing (32) by the response of one of the probes. If the flow is a turbulent 
shear flow satisfying the thin-boundary-layer assumptions, and if the reference 
pressure PO is taken at the shear-layer edge, PO = P,, then 

where i = 1 or 2. 

Experimental results for square-nosed probes 

The practical application of (32) and (33) is illustrated by a set of unpublished 
results obtained during an earlier, unrelated investigation. Impact pressure 
profiles were measured at  a section 18 nozzle diameters downstream in a confined, 
turbulent, round air jet. The jet facility is described elsewhere (Becker, Hottel & 
Williams 1963). The value of the confined-jet performance parameter, the Craya- 
Curtet number Ct (Becker et al. 1963), was 0.345, and the flow in the region of 
interest was virtually indistinguishable from a free jet discharging into a body of 
still air (negligible free-stream velocity, virtually zero axial pressure gradient). 
The nozzle diameter was 0.635 cm and the nozzle air velocity was 130 m/s. The 
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D,(mm) D,(mm) D(mm) DilD m K 

Probe B 0.56 0.31 0.56 0.55 1.8 1.0 
Probe A 0.89 0.59 0.59 1.00 3.1 2.9 

TABLE 7 

0 1 

r (cm) 

FIGURE 11. Impact pressure profiles in a round air jet at x/Di = 18, measured with two 
square-nosed Pitot probes with different diameter ratios. 0, Di/D w 1 ; , D J D  = 0.55. 

two Pitot probes were made of stainless-steel hypodermic tubing. One, A ,  was 
sharp-lipped and the other, B, was square-.nosed. The salient characteristics 
are given in table 7. The directional response was not studied experimentally, 
and the values of m and K have therefore been estimated from figure 3. The 
reference pressure PO was taken from a static pressure tap in the wall of the con- 
fining duct, and should be virtually the same as the mean static pressure Pb at 
the jet edge. 

The impact pressure profiles measured at x/Dj = 18, where x is downstream 
distance and D, the nozzle diameter, are shown in figure 11. The integral scale 
of the turbulence was approximately A = 6mm (Becker, Hottel & Williams 
1967, figure 12). Thus the condition in the present theory of Pitot response, that 
the turbulence scale be large compared with the probe diameter, should be 
satisfied. The near equality of the characteristic diameters D should ensure that 
the effect of the mean velocity gradient (the displacement effect) tends to vanish 
in the differential response. The probe was well damped (15 s time constant for 
50 % change), and the accuracy of the manom-eter readings was k 0.1 % or better. 
In  view of these considerations, the data should be adequate for accurate calcula- 
tions from (33). 
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T I X  

FIGURE 12. Turbulence intensity profile in a, round air jet. 0, from present measnrements 
with two square-nosed Pitot probes, at z/D* = 18; --, hot-wire results of Wygnanski di 
Fielder (1969), at x/Di = 60. 

The results, figure 12, show that the profile of the total relative intensity 
of transverse velocity fluctuations, E)*/uz, is of the form expected from past 
studies of free round jets with hot-wire anemometers (e.g. Corrsin & Uberoi 
1950; Gibson 1963; Wygnanski & Fiedler 1969). The data of Wygnanski & 
Fiedler for x/Di = 60, the smallest x/Dj a t  which radial profiles were obtained, 
are shown for comparison. The hot-wire results around the jet centre-line are 
significantly higher than the present data, but this simply reflects the growth of 
the relative intensity with x/Dj  towards the self-preserving distribution which is 
closely approached in free jets around x/Di = 100. At r /x  > 0.04 the two profiles 
are close together, in accord with the fact that self-preservation is approached 
most rapidly in the region of maximum shear. The relative intensity 0.23 on 
the jet centre-line agrees with the results obtained on a much larger jet with 
another pair of Pitot probes; see figure 15. 

The above results are of special interest because (i) the probes were near the 
minimum practical size, (ii) the characteristic probe diameters were matched to 
minimize the influence of the displacement effect in a velocity gradient, (iii) the 
differences in the directional characteristics of the probes were not great, but 
the differential response was still quite accurately measurable, and (iv) the trans- 
verse dimensions of the flow, approximately 1 cm radius to the velocity half- 
amplitude point, were not far from the minimum below which accurate measure- 
ments would be very difficult with even the smallest practical probes. 

Results for a differential Pitot probe 

Since turbulence detection requires two Pitot probes with different directional 
characteristics, it is convenient, when the flow to be studied is adequately large, 
to couple the probes rigidly in one instrument. The differential response can then 
be measured directly. The two probe tips must, of course, be a t  statistically 
equivalent points in the flow (virtually equal mean velocity, mean static pressure 
and mean turbulence properties). I n  axisymmetric or planosymmetric flows, 
traversing can be arranged so that the tip distances from the flow centre are 
equal. 

We have previously described an instrument in which a square-nosed probe 
was coupled with a sphere-nosed probe (Becker & Brown 1969). The name 
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1-5 cin i-F<) 1 I c m  

T 

FIGURE 13. Differential Pitot probe. The support block is a 2.5 cm square by 0.62 cm 
thick block, rounded on the leading edge. The square- tipped component probe is of 3.1 7 mm 
O.D. by 1.37mm I.D. tubing, tapered a t  15’ to 1.37mni O.D.  over the final 4mm of its length. 
The round-nosed component probe is of 3.17 mm tubing with a solid insert a t  the tip, 
drilled with a 0.34mm diameter hole. Material w w  type 310 stainless steel, for high- 
temperature service. 

0.3 

5 0.2 
Q +IN 
> 
2 

0- I 
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I I I I I I 1- 

0. I 

sin2 0 
0.2 

FIGURE 14. Differential response characteristics of the differential Pitot D be, at  various 
Reynolds numbers. Re values: 0, 3800; 0, 6200; A, 11560. 

‘differential Pitot probe’ was given to such devices in general. The probe was 
used for turbulence measurements in air jets and flames, but the interpretation 
of the data was simplistic in light of the present theory. We have subsequently 
built another probe of this type, very rugged and suitable for use in flames, and 
have tested it by making turbulence measurements in a large free air jet. The 
probe (figure 13) consisted of a 3.18 mm diameter round-nosed tube, Di/D = 0.108, 
coupled with a 1-37 mm tip diameter square- tipped, tapered (but effectively 
square-nosed) tube, Di/D = 0.6 1. The directional response characteristics, 
determined in a uniform wind-tunnel stream (Brown 1971), were m = 1.192 and 
K = 2.39 for the round-nosed leg and m = 2.13 and K = 2.49 for the square- 
nosed leg (data are also shown in table 1 and fipres 1, 2 and 3). Tests a t  various 
wind velocities indicated no effect of Reynolds number in the range of present 
interest (Re > 3000, Re based on diameter of round-nosed leg). The differential 
response (figure 14) was virtually linear in sin2 r9 = uiluz, giving 
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0.01 
0.02 
0.03 
0.05 
0.07 
0.10 
0-15 
0.2 
0.3 

0.0101 
0.0206 
0.0314 
0.0545 
0.0782 
0.1176 
0-1935 
0.2857 
0.5455 

0.0102 
0.0208 
0.0319 
0.0556 
0.0814 
0.1250 
0.2143 
0.3333 
0.7500 

1.042 1.042 1.036 1.030 
1.152 1.152 1.142 1.130 
1.207 1.207 1.192 1.173 
1.253 1.253 1.233 1.200 
1.261 1.259 1.240 1.190 
1.241 1.239 1.228 1.150 
1.168 1.160 1-192 1.071 
1.075 1.059 1.169 0.993 
0.866 0.816 1.305 0.945 

TABLE 8. Response functions for the differential Pitot probe shown in figure 13, coupling 
a square-nosed component probe (m = 2.13, K = 2.94, subscript 1) with a round-nosed 
one (m = 1.192, K = 2.39, subscript 2) 

The fact that differential probes with this characteristic are possible was also 
observed in our earlier work (Becker & Brown 1969). These probes provide a 
particularly simple device for detecting the transverse component of the stream 
velocity . 

The performance in a turbulent flow, with the probe oriented into the mean 
velocity vector, has been computed from (33) for p values of 4 and 1. The results 
(table 8) can be compared with the hypothetical case of a probe with the same 
values of m and K ,  but of such a size that the distance L, separating the com- 
ponent probes, is small relative to the turbulence scale A. Consider the time 
mean of the difference in instantaneous pressure signals received by the com- 
ponent probes. Equation (34) gives 

if L < A. A significant feature of the differential response AFs of the actual 
probe is thus seen to be that it approximates this Ps; i.e. 

Such a relation was postulated earlier for a similar probe (Becker & Brown 
1969)) and has now been shown to be reasonably close to the truth. 

Equation (36) has useful corollary. Consider a situation where the differential 
Pitot probe is a t  an angle to the mean velocity vector. The differential response 
approximates 

AFs = 1*29(&pFfi), (37) 
- -  

where, now, Dn = o;+oz +ui+uE. Another feature of interest (table 8) is the 
near constancy of the normalized response in the form (U:/Ui)  [ A ~ s / ( ~ s l  -<)I, 
where subscript 1 indicates the square-nosed component probe. We obtain 

_ -  
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It remains to describe the experiment in which the probe was used for the 
detection of turbulence in a free air jet. The jet nozzle diameter Di was 7.5 em 
and the nozzle air velocity was 55 mls. Measurements were made along the jet 
axis over the range 6 Q x/Di 6 90, where x is downstream distance. The integral 
scale of the turbulence can be estimated from a formula based on results of 
Wygnanski & Fiedler (1969): A N 0 . 0 4 ~ .  The relative integral scale AID varied 
between 6 at xlDj = 6 and 90 at x/Dj = 90, where D is the diameter of the round- 
nosed component Pitot probe (the larger of the two components). Thus the 
condition A 3 D,  for quasi-steady quasi-laminar instantaneous signal develop- 
ment, was fairly well satisfied. The probe straddled the jet centre-line. The jet 
was however so large, laterally, that conditions a t  the probe tips were virtually 
the same as on the centre-line, and transverse gradients in the mean velocity were 
insignificant. On the jet centre-line 5 and are indistinguishable; we thus have 
U i  = u," + u$ = 2 2  = Z q ,  where r and q5 are cylindrical co-ordinates appropriate 
to the jet. 

Fluid-mechanical damping in the probe output pressure lines was controlled 
by the insertion of creeping-flow resistances, e.g. equal lengths of 0.2 mm inside 
diameter hypodermic tubing. Pressures wert: sensed with differential pressure 
transducers (fist a Pace Engineering Co. Model P 90D, and later a Datametrics 
Barocel Type 523). The time constant for 50% response to a step change in 
pressure was adjusted to values between 15 s and 60 s. The electrical output was 
read with an integrating system, usually with an integration time of 100 s. 

Table 3 gives the predicted relation between the normalized probe response 
A ~ s / ( ~ s l - ~ b )  and the turbulence level v 2  = Ui/U$ The hot-wire anemometer 
data of Wygnanski & Fiedler (1969) show that E 1, and we therefore adopt this 
value; the outcome, however, according to table 3, is about the same for any 
reasonable choice of p .  The turbulence intensities so calculated from the dif- 
ferential Pitot measurements along the jet csntre-line are shown in figure 15. 
The hot-wire data of Wygnanski & Piedler, d s o  shown, provide a comparison 
with the best results available by that technique. These authors measured 
uz, u," and 3 in an air jet under operating conditions similar to ours, and their 
data appear to be of the highest quality that the current state of hot-wire 
anemometry allows. The good agreement between the results given by these 
totally different and independent techniques citn be taken as strong evidence for 
the essentially validity and accuracy of both Any differences between the two 
sets of data are so nearly within the precision error of the measurements as to be 
of doubtful significance. It should be noted that the scatter in the present data, 
increasing in severity with downstream distance, simply reflects a precision error 
due to the limiting of the time averaging process, and could be reduced to  any 
desired degree by increasing the effective averaging time. Wygnanski & Fiedler's 
difficulties in this regard were smaller becaust: their nozzle was only one-third 
as large, but they also remarked on the long averaging times required to achieve 
high precision. 

Another comparison with hot-wire measurements is afforded by the data of 
Curtet & Ricou (1964), who studied an axisymmetric ducted jet system at a 
Craya-Curtet number Ct of 4.5 (ratio of jet and duct diameters = 0.074; ratio 

- - -  

-- - 

--  
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100 

FIGURE 15. Turbulence characteristics on the centre-line of round jets. 0, free jet, from 
present measurements with differential Pitot probe; , free jet, hot-wire measurements of 
Wygnanski & Fielder (1969); a, confined jet with Ct = 0.345, from present measurements 
with Pitot probes (data in figure 12); A, conked jet with Ct = 4.5, hot-wire measure- 
ments of Curtet & Ricou (1964; in this case the ordinate is (q)&/ / (D*--  Ut),  where U,is the 
free-stream velocity). 

of nozzle and free-stream velocities in nozzle plane = 3-7). Their results indicate 
that (z)*/( Dz - U,), where U,(x) is the local free-stream velocity, is only weakly 
affected by Ct along the jet centre-line (until the jet reaches the duct wall), and 
the values obtained are very similar to those in a free jet. The same observation 
appears to apply to (G)*/(gz - q) (figure 15); Curtet & Ricou’s hot-wire results 
lie quite near our differential Pitot data and Wygnanski & Fiedler’s hot-wire 
data on free jets. 

The centre-line value of the turbulence intensity given by the results in figure 
12, measured with considerably smaller and different Pitot probes in a jet from 
a nozzle only & as large, but with reasonably comparable boundary conditions 
and nozzle Reynolds number, agrees closely with the data on our large free jet 
(figure 15). 

It may be concluded that the experimental evidence generally supports the 
present theory of Pitot response in turbulent streams. The greatest weight must 
be given to the good agreement with the hot-wire results of Wygnanski & 
Fiedler. To establish fully the validity of this critical comparison, we shall sub- 
stantiate our earlier statement that Wygnanski & Fiedler’s jet system was similar 
to ours, so similar, indeed, as to be virtually identical in behaviour over the 
critical region. 

The throat diameter of Wygnanski & Fiedler’s nozzle was 2.7cm and the 
exit air velocity was about 68 m/s, compared with our values of 7.5 cm and 
55mfs. The exit Mach numbers were thus virtually equal, about M = 0.20. 
The exit Reynolds numbers, Re = 1.0 x lo5 and 2.5 x lo5, were large and similar 
in value. Both nozzles were designed to give a uniform exit velocity distribution 
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except in the wall boundary layer, which, at  these Reynolds numbers, is of negli- 
gible thickness. The studies of Laurence (1956), Davies, Fisher & Barratt (1963), 
Kolpin (1964) and Becker & Massaro (1968) show that under these conditions 
any differences between the jets, attributable to the effects of exit velocity dis- 
tribution, Mach number and Reynolds numher, should be quite imperceptible. 

Wygnanski & Fiedler’s nozzle was set wilth its mouth in the plane of a 2m 
square wall and ours was set in a 1 m square wall. The diameter of the bounding 
wall at x = 0 (the plane of the nozzle mouth) was in both cases over 10 times the 
nozzle diameter. The flow beyond the walledge was therefore of very low velocity 
relative to fluid in the jet, and so the wall acted like an infinite plane at x = 0 
(extending to r -+ co in the cylindrical co-ordinate system of the jet). 

Conditions in the nozzle plane x = 0 in our work and Wygnanski & Fielder’s 
were thus so similar that no significant difference between the jets can be expected 
from this source. Consider, finally, the boundary conditions at  x > 0, and par- 
ticularly a t  x 9 Dj .  Far enough downstream, as velocities in a jet decay to levels 
approaching those of room draughts and as the confining effect ofthe room begins 
to be felt, departures from the desired boundary condition U + 0 as r -+ co must 
exert a disturbing influence. Wygnanski & F’iedler took precautions so that dis- 
turbances were considered to be small as far downstream as x = 100Dj. Our 
measurements were done in a very large room under highly uniform temperature 
conditions and with the ventilation systein turned off. The first significant 
downstream disturbance arose from the fact that the nozzle was aimed horizon- 
tally about 1.3 m above the laboratory floor. The free jet thus approached the 
floor around x = SODi and then began undergoing transition into a wall jet. It 
may be concluded that the far-downstream boundary conditions in both our jet 
and Wygnanski & Fiedler’s closely approximated ideality, with respect to any 
effect on centre-line turbulence properties, up to at least x = %ODi. 

If the boundary conditions remained ideal very far downstream, the properties 
of the turbulent field should closely approach a state of self-preservation. The 
centre-line value of (G)&/ox or (q)S/uz to which the free jet tends in self- 
preservation is not well defined in figure 16. A better basis for evaluating the 
trend is provided by figure 16. The same technique has previously been applied 
to data on concentration fluctuations (Becker et al. 1967, figure 7) .  The equation 
of the straight line which fits the data for g#T < 0*25U,, or x > 25Dj, is 

The hot-wire data of Wygnanski & Fiedler (1969) give, from figure 3 in their 
paper, 

x > 40Dj. This indicates that, very nearly, i$ = 2 = 

(z)$/ox = 0,287, (40) 

= 0-2Sgx for z 9 Di. 

Characteristics of other dt fferential probes 

A more general impression of the turbulence detection characteristics of differen- 
tial Pitot probes is conveyed by figure 17, which shows calculated values of 
APsl&pPn as a function of v 2  = Ui/U:  for several probes. The probes considered 

- _  
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FIGURE 16. Trends in the intensity of the transverse components of velocity fluctuation 
on the centre-line of a free jet. 0, present data from measurements with differential Pitot 
probe; 0 ,  hot-wire data of Wyngenski & Fielder (1969). 

FIGURE 17.  Response of differential Pitot probes having one component with DJD = 1 .  
Top curves, other component is round-nosed; bottom curves, other component is square- 
nosed. 

have the common feature that one component probe is a thin-walled tube, 
1 - DJD < 1. The other component is square-nosed or round-nosed. Sensitivity 
increases with decreasing values of Di[D in the second component probe, and a 
round noso gives greater sensitivity than a square one. 
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7. Conclusion 

following ideal operating conditions. 
The theory of Pitot probe response has so far been developed only for the 

(i) Turbulence scale large, roughly A > 513. 
(ii) Probe Reynolds number large, roughly Re > 1000. 
(iii) Mach number small, roughly M < 0.5. 
(iv) Negligible effect of mean velocity gradients. 
Some of the effects of non-ideality will be considered in another paper. The 

complications are, however, not easily amenable to quantitative treatment. 
The best plan for the user of Pitot probes is therefore to select a probe such that 
ideal conditions will be approached as closely as possible. 

The performance visualized in the theory will be attained only if surging flow 
in the probe, in response to the turbulent field outside, is made negligible. The 
fluid in the probe must be effectively brought to stagnation. For gases, this 
requires that the volume of fluid in the measurement system, in the pressure 
transmission lines and the pressure sensing device, be adequately small, and that 
changes in this volume be small. The desired effect may also be achieved by in- 
serting a suitable flow resistance not too far Srom the probe mouth (but not too 
near, according to the criterion Li > 3 0 ,  given in $ 2 ) .  

The laminar-flow response equation (5) is fairly exact, for the probes here 
considered, at  values of 8 up to around 60". The accuracy however diminishes 
rapidly at  higher values of 8. It follows that if, in a turbulent flow, significant 
energy is found in values of UZ,/U2 above 0.75, the present theory will fail. In  
statistical terms, the point at  which this happens should be above 

-- - _  
w2 = U i / U 2  = 0.2, or 

When probes are used for turbulence measurements, individual calibration 
of the directional sensitivity is desirable if very accurate results are sought. 
This is especially true for very small probes whose inside and outside diameters 
may not be known with sufficient accuracy to fix precisely the values of the 
response parameters m and K.  Another source of error, the displacement effect 
in a velocity gradient (Hall 1956; Lighthill 1957), can be minimized by using 
square-nosed probes of equal outside diametlsr. The residual displacement effect 
on the differential response is then reduced t o  a relatively weak influence of the 
diameter ratio Di/D. 

The highest differential response is however attained by coupling a round- 
nosed or sphere-nosed probe of small Di/D ~11 th  a square-nosed one of high DJD. 
Design criteria for the relative sizes of the probes to minimize the displacement 
effect have not been adequately determined, but there are indications that the 
outside diameter of the round-nosed or sphere-nosed probe should be between 
1.4 and 1-7 times that of the square-nosed probe. In any case, the displacement 
effect in most turbulent shear flows should be small if the turbulence scale is at  
least half an order of magnitude larger than the diameter of the largest probe, 
A > 50. 

We have shown that, using Pitot probes of nearly the minimum practical size 

v 2  = UZ,lUt = 0.3. 
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( D  = 0.5 mm), apparently reliable velocity fluctuation intensity data are 
obtained on a jet at a section where the shear-layer thickness is of the order of 
2 cm (velocity half-radius 1 cm). The evidence further indicates that good 
data would still be obtained if the shear-layer thickness were as small as 1 cm, 
at which point A = 5 0 .  The turbulence scale in pipe flows is of the order of & the 
pipe diameter. Thus the smallest pipe flow in which our theory should quanti- 
tatively apply has a diameter of the order of 5cm. By comparison, hot-wire 
anemometry can be successfully applied to flows somewhat smaller than the 
limits in these examples, but not very greatly so. 

Differential pressure transducers now available can detect signals as small as a 
mm water column, which means that, in air a t  room temperature, values 

of (E)* of 0.5 cm/s are measurable. Such high resolution was not required in our 
work; an instrument with a water-column range of 2.5 cm and the capacity of 
detecting differential pressures as small as 0.01 mm was quite satisfactory. The 
work could also have been done with a good micromanometer. 

The use of Pitot-static (combined Pitot and static pressure) probes should be 
avoided when possible, because of the unknown effect of turbulence on the static 
pressure reading. This limitation might be removed by an investigation of the 
effect of turbulence on the response of the common cylindrical, round-nosed 
static pressure probe. The theory of the response can be developed in an analogous 
manner to the present theory, but the basic equation for steady laminar flow will 
be different from (5). 

The static pressure taps in such probes should be made smaIl enough so that 
there is no significant surging through them, and of sufficiently large depth-to- 
diameter ratio so that the fluid comes to rest inside the pressure tap. 

For turbulent shear flows that satisfy the boundary-layer assumptions, the 
reference pressure for impact pressure measurements should preferably be 
taken a t  the shear-layer edge. According to our theory, round-nosed probes with 
Di/D about 0.45 and square-nosed probes with Di/D about 0.15 will then detect 
4pVz with good accuracy. 

The general theory provides a basis for computing the effect of turbulence on 
the response of the five-hole Pitot probe. This device is capable of measuring the 
static pressure and the three velocity components in a laminar flow. It is, however, 
most commonly used in turbulent flows, often with very high levels of velocity 
fluctuation. 

Another application of the theory is to the probe developed by Ebrahimi 
(1967), in which a condenser microphone is located inside the heads of the probe, 
facilitating detection of turbulent fluctuations in the signal pressure P,. Equa- 
tion (6) shows that the result will be simple only when m z l .  The effect of the 
pressure transmission channel (the cavity between the probe mouth and the 
microphone or other pressure transducer) on the frequency response must also 
be considered; discussions may be found in a paper by Wad (1969) and in a 
manual published by Disa (Transducer Manual, 1969, Herlev, Denmark). 

8 F L hl 
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